

We Put Science To Work Enabling Technologies for Spent Fuel Reprocessing: Nuclear Radiation & Radiation Damage to Materials

Robert L. Sindelar

Kristine E. Zeigler

July 21, 2011

Introduction to Nuclear Chemistry and Fuel Cycle Separations

Consortium for Risk Evaluation with Stakeholder Participation

Outline

- **Radioisotopes in Spent Fuel**
- Shielding
 - Concepts
 - **Evaluation Methodologies**
- Radiolysis
 - Concepts
 - Radiolysis Effects in Separations Process Solutions/Materials

Radiation Effects on Materials

- Concepts
- Radiation Effects on Seal and Gasket **Materials**
- Radiation Effects on Structural Materials

Effects of Radiation Must be Considered in Facility **Design (Shielding and Materials of Construction)** and Chemical Processes (Radiolysis)

SRS Canyon Photograph Pre-Operation (circa 1955)

Overview of Radiation Effects on Materials and Systems Relevant to Nuclear Fuel Cycle Separations is Presented

Radioisotopes in Spent Nuclear Fuel

Example of Research Reactor Spent Nuclear Fuel –

- Radioisotopes include
 - Alpha Emitters*
 - Beta Emitters*
 - Gamma Emitters
 - Spontaneous Neutron Emitters
 - Secondary Reactions (e.g. (α, n))

Fuel Isotope Content Dependent on Irradiation & Decay Times

*There are few pure Alpha or Beta emitters, Gamma emission is concomitant

Radioisotopes in Spent Nuclear Fuel, CONT'D

Example of Research Reactor Spent Nuclear Fuel –

- Materials Test Reactor Design Assembly
- HFR Petten Assembly #F1369
 - 93% Enriched
 - 484 gm total U initial
- 158 Day Irradiation in 50 MW Reactor with 211 MWD/assembly, 58% Burn-up

Radioisotopes in Spent Nuclear Fuel, CONT'D

Spent Nuclear Fuel, High Activity Radioisotopes –

- HFR Petten Assembly #F1369
- ORIGEN-S Code for Isotopic Analysis
- 209 Days Cool

93, I-129)

- Radioisotope Content
 - Actinides with > 10⁻⁴ Ci
 - Fission Products with > 10² Ci
- Note: Lists <u>Do Not</u> Include the Very Long-Lived Isotopes Important for Sequestration in a Waste Form (e.g. Tc-99, Zr-

Actinide	Cu	ries	Fission Broduct	<u></u>	rioe
Th231	3.9	5E-04	Sr89	1.2	21E+03
Pa233	6.3	4E-04	Sr90	6.	84E+02
U235	3.9	5E-04	Y90	6.	84E+02
U236	2.6	9E-03	Y91	2.	25E+03
U237	1.3	4E-04	Zr95	3.	09E+03
Np237	6.3	4E-04	Nb95	6.	28E+03
Np239	1.0	6E-04	Ru103	3.	33E+02
Pu236	1.3	6E-04	Rh103m	3.	33E+02
Pu238	1.5	7E+00	Ru106	6.	81E+02
Pu239	3.2	5E-02	Rh106	6.	81E+02
Pu240	3.4	9E-02	Cs134	3.	35E+02
Pu241	5.5	4E+00	CS137	6.9	91E+02
Am241	7.3	2E-03	Ba13/m	b.:	
Am243	1.0	6E-04		2.0 0	50E+02
Cm242	1.4	2E-01	Dr1//	9.3 Q	50E+03
Cm244	2.8	0E-03	Pr144m	3. 1	34F+03
Total 7.3	4E-	-00	Pm147	1	83F+03
			Total 3.96E+04		

Shielding – Concepts

Type of Ionizing Radiation	Characteristics	Range in Air	Shield	Hazards	Source
Alpha	Large mass, +2 charge	Very short, 1- 2 inches	Paper, skin	Internal	Pu, U
Beta	Small mass, -1 charge	Short, 10 feet	Plastic, glass, metal	Internal, external skin & eyes	Fission & activation products
Gamma/x-ray	No mass or charge, photon	Several 100 feet	Lead, steel, concrete	Whole Body internal or external	Fission & activation products
Neutron	Mass, no charge	Several 100 feet	Water, concrete, plastic	Whole Body internal or external	Cf, neutron sources

Shielding – Concepts, CONT'D

Gamma Ray Interaction with Matter (principal interactions)

Shielding – Evaluation Methodologies

Gamma Radiation – Exposure Rate for Flux at Initial Energy E₀

(mR/hr)

• Exposure Rate With No Shield:

 $X_0 = 0.0659 E_0 (\mu_a / \rho)_{\rm air} \phi_0$

• Exposure Rate With Shield:

$$X = 0.0659 E_0 (\mu_a / \rho)_{air} \phi_b$$
 (mR/hr)

With Mass Absorption Coefficient, (μ_a/ρ)_{air}

See NIST NISTIR 5632 for database of attenuation and absorption coefficients for materials

 $\xrightarrow{}$

Shielding – Evaluation Methodologies, CONT'D

Gamma Radiation – Buildup Flux

- Scattered Radiation is Built-Up at Lower Energies from Compton-Scattered Radiation and Bremsstrahlung (deceleration of electrons from Compton, Photoelectric, and Pair-Production)
- Buildup Flux:
 - For Point Source at Distance R :

$$\phi_b = \phi_0 \times Buildup = \frac{Se^{-\mu R}B_p(\mu R)}{4\pi R^2}$$

- Buildup Factor:
 - Point Source Factor (Taylor Form): $B_p(\mu \mathbf{r}) = Ae^{-\alpha_1\mu\mathbf{r}} + (1 - A)e^{-\alpha_2\mu\mathbf{r}}$

 \mathbf{F}

Energy spectrum of incident γ -ray beam

Shielding – Evaluation Methodologies, CONT'D

Considerations in Neutron Shielding

- Similar Concepts as for Gamma Shielding except Interactions Occur with Atoms (not electrons)
- Significant Contribution to Dose from Secondary Photons from Inelastic Neutron Scattering and from Neutron Capture
- Isotopic (Rather than Elemental) Composition of Medium
- Challenges with Shine or Indirect Streaming

Shielding – Evaluation Methodologies, CONT'D

Deterministic Transport Theory

- Linear Boltzmann Equation is Solved Numerically
- Discrete-ordinate Methods
 - Multigroup Form of Transport Equation Integrated over Each Spatial and Directional Cell of Mesh of Geometry
 - Problems with Irregular Shapes and Boundaries where Simplified Techniques such as Point Kernels with Buildup Cannot be Used
 - Can Treat Very Deep Penetration Problems

Monte Carlo Methods

- Simulation Made of Stochastic Particle Migration through the Geometry
 - Probability Relationships of Radiation Interacts with the Medium
 - No Use of Transport Equations
 - Complex Geometry Simulations
 - Computationally Very Expensive, Especially for Deep Penetration
 - PRIMARY TOOL OF SHIELDING ANALYSIS IS MCNP CODE

Shielding – Radioactivity Units

Units to Characterize Amount of Radioactivity

- Curies (Ci)
 - 1 Ci = 3.7 x 10¹⁰ decays/sec
 - Total or Radionuclide-Specific
- Becquerel (Bq)
 - 1 Bq = 1 decay/sec
 - Total or Radionuclide-Specific

• Decays per Minute per milliliter (dpm/ml)

- Used to Characterize Activity of Solutions
- Total or Radionuclide-Specific

Shielding – Exposure/Dose Units

Radiation Unit	Measures	Effect On	Type of Radiation	Relates to	Conversion
Roentgen (R) C/kg	Exposure	Air	Gamma and x- ray		1 R = 1000 milliroentgen (mR) 1 C/kg = 3,876 R
rad (Radiation Absorbed Dose); Gray (Gy)	Dose	Any Material	All Types		1 Gy = 100 rad =1 J/kg 10 μGy = 1 mrad 1 Wh/l ≅ 360,000 rad
rem (Roentgen Equivalent Man); Sievert (Sv)	Dose Equivalence (Dose Equivalence = Dose x Quality Factor)	Man	All Types	Accounts for Difference in Dose and Damage	1 Sv = 100 rem 10 μGy = 1 mrad

Radiolysis – Concepts

- G = # Molecules Produced per 100 eV absorbed energy
- Dependent on Incident Radiation Type
- Forward (Radiolytic) vs. Back Reactions
 - Forward:
- $H_2O \xrightarrow{\text{incident radiation}} H_2O_{aq}^+, OH, e_{aq}^-, H, H_2O_2, H_2$ • Back:

 $H + H_2O_2 \rightarrow OH + H_2O$ $OH + H_2 \rightarrow H + H_2O$ $H_2 + H_2O_2 \rightarrow 2H_2O$

Linear Energy Transfer Concept

Schematic depicting the formation of H and OH radicals in the track of a 1-MeV electron (a) and alpha particle (b)

Tri-n-butyl Phosphate (TBP)

- TBP Used in PUREX and HM Processes
- Chemical (Hydrolytic) and Radiolytic Reactions Decompose TBP
- Breakdown Sequence: TBP \rightarrow Dibutyl Phosphoric Acid (HDBP) \rightarrow Monobutyl Phosphoric Acid (H₂MBP) \rightarrow Phosphoric Acid (H₃PO₄)
- Many Hydrocarbons Formed Through Radiolysis of TBP
- Addition of nitric acid to TBP solutions introduces many thermal reactions

Ferrous Sulfamate

- Fe(II) Used to Reduce Np(V) to Np(IV) and Pu(IV) to Pu(III) for Subsequent Separation; Protects Reduced Pu and Np from OH⁻ Radical
- Sulfamate Added to Prevent NO₃⁻ Oxidation of Fe(II)
- Radiolytic Reactions Decompose Fe²⁺ and Sulfamate
- Radiation Effects on Ion Exchange Materials
 - Various Resin Systems are Used
 - Radiation Causes Loss of Exchange Capacity
 - Radiation Causes Gas Evolution

Radiolysis of TBP

- Radiolysis of TBP Alone or in Diluents, Anhydrous or Water-Saturated Cause Ionized or Excited TBP
- Radiolysis Product in Greatest Yield is HDBP
- Greater Yield in Anhydrous TBP than Water-Saturated
 - Anhydrous: G = 3 total acid molecules/100 eV
 - Water-Saturated: G = 1.8 total acid molecules/100 eV

Correlation of published data for yields of total acid and HDBP from TBP-aliphatic diluent solutions

Ref: Chapter 7, "RADIOLYTIC BEHAVIOR," in Science and Technology of Tributyl Phosphate, Volume I, Wallace W. Schulz and James D. Navratil, eds., CRC Press, Inc., 1984

Introduction to Nuclear Chemistry and Fuel Cycle Separations – NUCLEAR RADIATION

ORNL-DWG 84-1033

Total Degradation of TBP

- TBP Degradation is Due to Hydrolysis and Radiolysis
- Strong Effect of Temperature on TBP Degradation Rate

TBP degradation rates due to acid hydrolysis, alpha radiolysis, and metal-ion-induced hydrolysis at 80°C

Ref: M.H. Lloyd and R.L. Fellows, "Alpha Radiolysis and Other Factors Affecting Hydrolysis of Tributyl Phosphate," ORNL/TM-9565, June 1985

Radiolysis of Ferrous Sulfamate Fe(SA)₂ or Fe(II) + (NH₂SO₃⁻)₂

- If Fe²⁺ not Present, Quick Reversion of Np(IV) to Np(V) and Pu(III) to Pu(IV)
- High Dose Rate Process Solution Can Cause Rapid Depletion of Fe²⁺

Fig. 2. Depletion of Fe(II) from radiolysis by dissolved fission products of ^{235}U in actual process solution. Dose rate =1.5 ×10⁵ rad/h, $T = \sim 25^{\circ}C$.

Fig. 3. Dependence of the redox potential and fraction of ²³⁷Np or ²³⁸Pu in the 4+ state on radiolysis by dissolved fission products of ²³⁵U in an actual process solution. Dose rate = 1.5×10^5 rad/h, $T = \sim 25^{\circ}$ C, $\bullet =$ redox potential, $\bullet =$ percent Pu(IV), and $\bullet =$ percent Np(IV).

Ref: N.E. Bibler, "Radiolytic Instability of Ferrous Sulfamate in Nuclear Process Solutions," Nuclear Technology, Volume 34, August 1977

Radiolysis of Ferrous Sulfamate

- Co-60 Gamma Irradiator Used to Investigate Radiolysis Effects in Process Solutions
- Both Fe²⁺ and Sulfamate are Depleted

Fig. 1. Depletion of Fe(II) and sulfamate from ⁶⁰Co gamma radiolysis of simulated process solutions. Dose rate = 6.09 X 10^5 rad/h T = 30 to 37° C, \oplus = Fe(II), and \blacksquare = sulfamate.

Ref: N.E. Bibler, "Radiolytic Instability of Ferrous Sulfamate in Nuclear Process Solutions," Nuclear Technology, Volume 34, August 1977

Radiolysis of Ion Exchange Media

- Doses of 10⁵ to 10⁶ Gy Significant to Synthetic Organic Ion Exchangers
- Polycondensation Type Resistant to Radiation Damage, but Overall Initial Properties Poor
- Gas Evolution During Radiolysis

A comparison of the change in total exchange capacity of 4% cross-linked stytrene DVB sulfonic acid resins

Ref: K.K.S. Pillay, "A Review of the Radiation Stability of Ion Exchange Materials," Journal of Radioanalytical and Nuclear Chemisry, Articles, Vol. 102, No. 1 (1986) 247-268.

Introduction to Nuclear Chemistry and Fuel Cycle Separations – NUCLEAR RADIATION

20

Radiation Effects on Materials – Concepts for Polymers

Effects on Polymers

- Irradiation Effects
 - Loss of Elasticity and Sealing Ability; Gas Evolution; Leaching
- Important Factors
 - Total Dose (rad); Dose Rate
 - Presence of O₂
- Degradation Mechanisms One Mechanism Frequently Predominates

 Scission: Molecular Bonds Ruptured - Reduces the Molecular Weight and Strength; Gas Evolution

Cross-Linking: Polymer Molecules Linked to Form Large 3D
 Molecular Networks – Causes Hardening and Embrittlement

Enhanced Oxidation

Radiation Effects on Materials – Concepts for Polymers, CONT'D

Polystyrene

Polyimides

Polysulfone

Polvamides (nvlon)

Polyphenylene sulfide

Polyvinyl chloride (PVC)

Materia

Polvethylene, various densities

Effects on Polymers, CONT'D

 Radiation Effects Difficult to Predict

> For Carbon-Carbon Chains (Backbones), Cross-Linking will Occur if H attached to C; Scission will Occur at Tetra-Substituted Carbon

> Polymers with Aromatic Molecules More Resistant than Aliphatic

- Polystyrenes (aliphatic)
- Polyamides (aromatic)
- Loss of Mechanical Properties Important

Radiation

Stability

Good/Excellent

Excellent

Good

Excellen

Excellent

Excellen

Good

Comments

Yellows. Antioxidants and stabilizers prevent yellowing. High-molecular-weight organotin stabilizers improve radiation stability; color-corrected radiation

High-density grades not as stable as medium- or low-density grades. Nylons 10, 11, 12, 6-6 are more stable than 6. Film and fiber are less resistant

Natural Material is yellow.

Ref: K.J. Hemmerich, "RADIATION STERILIZATION, Polymer Materials Selection for Radiation-Sterilized Products," Medical Device & Diagnostic Industry, Feb 2000, p. 78

Introduction to Nuclear Chemistry and Fuel Cycle Separations – NUCLEAR RADIATION

22

Radiation Effects on Materials – Concepts for Polymers, CONT'D

Dose Rate Sensitivity

- Polymers are Susceptible to Oxidation, which is Diffusion-Limited
- High Dose Rate Exposures May Not be Indicative of Aging in Low Dose Rate Environments
- Practical Example: Materials
 "Qualified" for 40-year Service
 Life May Fail Sooner

Dose to 50% elongation loss in PVC cable insulation (Data shifted by superposition to a reference temperature of 50°C)

Ref: SAND90-2009, "Predictive Aging Results for Cable materials in Nuclear Power Plants", K.T. Gillen, R.L. Clough, November 1990, p. 41.

Radiation Effects on Seal/Gasket/Coating Materials in Separations Service

Empirical Knowledge Base – In Vitro Testing and Service Experience

- Fluoropolymers needed for chemical resistance
 - Teflon –initial damage at 1-5E4 rad, severe damage at 1-10 Mrad
 - Jumper Gaskets: Teflon-asbestos (functional to 100-1000 Mrad)
 - Viton[®] B FKM fluoroelastomer, older formulations with lead oxide, not suitable for TBP solutions
 - Kalrez[®] FFKM perfluoroelastomer expensive, acids at high temp
 - Halar®/ECTFE low permeability, possible chloride release
 - Tefzel[®]/ETFE copolymer used in HLW transfer lines, ball valves
 - Kynar[®]/PVDF most resistant fluoropolymer, less resistant to strong nitric acid or NaOH solutions (stress-cracking).

Radiation Effects on Materials – Concepts for Metals

Effects on Metals

- Irradiation Effects
 - Radiation Hardening & Embrittlement at Low Irradiation Temperatures (T_{irr} < 0.3 T_{m.p.})
- Important Factors in General
 - Total Displacement Damage and Damage Rate
 - Irradiation Temperature
 - Spectral Effects (particle energy distribution)
- Degradation Mechanisms
 - "Black Spot" Damage at Low Irradiation Temperatures

Radiation Effects on Materials – Concepts for Metals, CONT'D

Radiation Damage Phenomena: n-Irradiation of Crystalline Materials

Primary Knock-On Atoms

- Neutron transfers Energy to Lattice atom
- One Neutron Can create Many PKAs

Cascades from PKAs

- Create Free Defects
- Recombination
- Dislocation Loops
- Stacking Fault Tetrahedra

Displacements per Atom Formulation

- $$\begin{split} \nu(T) &= 0 \text{ displacements} & \text{ for } T < E_d \\ \nu(T) &= 1 & \text{ for } E_d < T < 2E_d \\ \nu_{\text{NRT}}(T) &= 0.8T/(2E_d) & \text{ for } T > 2E_d \end{split}$$
- E_d = threshold energy to cause a displacement from a crystalline position

Displacement Rate for Elastic Collision Events

See ASTM E693 for a full discussion including tabulation of $\sigma_d(E)$ that is effectively the integral on the right

Radiation Effects on Metals in Separations Systems

Displacements in metals from:

- Alpha/Beta Near Surface
- Spontaneous
 Neutrons –
 Very Low
 Dose
- Gamma –
 Very Low
 Dose

Radiation Effects on Metals in Separations Systems, CONT'D

No Significant Impact to Mechanical Properties Expected for Separations Tanks

Ref: S.J. Zinkle and R.L. Sindelar, "Defect Microstructures in Neutron-Irradiated Copper and Stainless Steel," J. Nucl. Mat. 155-157 (1988) p. 1196

Introduction to Nuclear Chemistry and Fuel Cycle Separations – NUCLEAR RADIATION 29

Acknowledgments

Thanks to Following SRNL Staff

- Dennis Vinson Shielding Topics
- Ned Bibler Radiolysis Topics
- Eric Skidmore Polymers in Radiation Service

Sponsor: U.S. Department - Office of Environmental Management

